Oxford Cambridge and RSA

## GCE

## Physics B

## H157/02: Physics in depth

Advanced Subsidiary GCE

## 2021 Mark Scheme (DRAFT)

This is a DRAFT mark scheme. It has not been used for marking as this paper did not receive any entries in the series it was scheduled for. It is therefore possible that not all valid approaches to a question may be captured in this version. You should give credit to such responses when marking learner's work.

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

1. Annotations

| Annotation | Meaning |
| :--- | :--- |
| BOD | Benefit of doubt given |
| CON | Contradiction |
| ES | Incorrect response |
| ECF | Error carried forward |
| L1 | Level 1 |
| $\mathbf{L}$ L | Level 2 |
| $\mathbf{L 3}$ | Level 3 |
| TE | Transcription error |
| NBOD | Benefit of doubt not given |
| POT | Power of 10 error |
| $\mathbf{A}$ | Omission mark |
| $\mathbf{S F}$ | Error in number of significant figures |
| $\boldsymbol{S}$ | Correct response |
| $\boldsymbol{S}$ | Wrong physics or equation |

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions)

| Annotation | Meaning |
| :---: | :--- |
| reject | alternative and acceptable answers for the same marking point |
| not | Answers which are not worthy of credit |
| Ignore | Answers which are not worthy of credit |
| Allow | Answers that can be accepted |
| $\mathbf{( ~ )}$ | Words which are not essential to gain credit |
| ECF | Underlined words must be present in answer to score a mark |
| AW | Alternative wording |
| ORA | Or reverse argument |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| Section A |  |  |  |
| 1 (a) | Mean of remaining data $=0.278 \mathrm{~mm} \checkmark$ <br> Range of remaining data $=0.29-0.26 \mathrm{~mm}=0.03 \mathrm{~mm}$ <br> Uncertainty (Spread) $=1 / 2$ range $=0.015 \mathrm{~mm} \checkmark$ <br> Sig figs: Round uncertainty to 1 s.f., i.e. 0.01 or $0.02 \mathrm{~mm} \checkmark$ <br> Express mean to same number of d.p. as uncertainty $\checkmark$ | 4 | ECF own uncertainty |
| (b) | 0.34 mm is $>2 \times$ uncertainty from mean of remaining data $\checkmark$ Any reasonable suggestion for anomaly | 2 | Allow 'well away from all remaining readings' OWTTE e.g. micrometer not perpendicular to wire |
|  | Total | 6 |  |
| 2 (a) | Same current enters the electrolytic cell as leaves it $\checkmark$ Which requires each electrode to receive the same charge in the same time $\checkmark$ | 2 |  |
| (b) | Arrow on 2+ to right and arrow on 1- to left AND Opposite charges attract $\checkmark$ <br> Arrow on 2+ half the size of arrow on 1- $\checkmark$ Because same charge received per second requires twice as many 1 - as $2+$, so they move faster/twice as fast $\checkmark$ | 3 | Can explain directions in terms of current produced by battery |
|  | Total | 5 |  |
| 3 (a) | (Starts stiff and) gets easier to pull going O to A $\checkmark$ Gets harder to pull as you approach B $\checkmark$ | 2 |  |
| (b) | Less work done by band (on the stretching agent) in the BCO $\checkmark$ <br> Internal energy of band has increased/band is hotter | 2 | Credit A-level treatment but not expected here |
|  | Total | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 4 | Converts $\sigma$ to $\rho$ or $R$ to $G \checkmark$ Correct values substituted into the relevant equation $\checkmark$ $A=1.9(3) \times 10^{-7}\left(\mathrm{~m}^{2}\right) \checkmark$ $A=1.9(3) \times 10^{-7}\left(\mathrm{~m}^{2}\right)^{\checkmark}$ | 3 | $\begin{aligned} & \rho=1.06 \times 10^{-6} \mathrm{~m}, \mathrm{G}=0.0378 \mathrm{~S} \\ & \text { m.p. } 2 \text { may subsume m.p. } 1 \end{aligned}$ |
|  | Total | 3 |  |
| 5 (a) | $\begin{aligned} & E=3.31 \times 10^{-18} \mathrm{~J}-2.99 \times 10^{-18} \mathrm{~J}=3.2 \times 10^{-19} \mathrm{~J} \\ & P=3.4 \times 10^{17} \mathrm{~s}^{-1} \times 3.2 \times 10^{-19} \mathrm{~J}=0.109 \mathrm{~W} \checkmark \end{aligned}$ | 1 |  |
| (b) | $\begin{aligned} & f=E / h=3.2 \times 10^{-19} \mathrm{~J} / 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{-1}=4.83 \times 10^{14} \mathrm{~Hz} \\ & \lambda=c / f=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} / 4.83 \times 10^{14} \mathrm{~Hz}=6.22 \times 10^{-7} \mathrm{~m} \checkmark \end{aligned}$ | 2 | e.c.f own E value from (a) Or: recall $E=h c / \lambda \checkmark$ and evaluation $\checkmark$ Allow 2 or 3 s.f. |
| (c) | $\begin{aligned} & \text { for each photon, } \Delta m v=h / \lambda=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{-1} / 6.22 \times 10^{-7} \mathrm{~m} \\ & =1.06(7) \times 10^{-27} \mathrm{~N} \mathrm{~s} \\ & F=3.4 \times 10^{17} \mathrm{~s}^{-1} \times 1.06(7) \times 10^{-27} \mathrm{~N} \mathrm{~s}=3.62(7) \times 10^{-10} \mathrm{~N} \end{aligned}$ | 2 |  |
|  | Total | 5 |  |
|  | Section A total | 23 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| Section B |  |  |  |
| 6 (a) (i) | ```Resultant force F = ma=14700 kg\times2.1 m s-2}=30870 N Weight W of lem =mg=14700 kg }\times1.62 \mp@subsup{\textrm{N kg}}{}{-1}=23814 N F=thrust - W so thrust = 30870 N +23814 N = 54685 N V``` | 3 | Comparison with 55 kN can be assumed |
| (a) (ii) | $\begin{aligned} & s=1 / 2 \text { a } t^{2} \text { so } 10 \mathrm{~m}=1 / 2 \times 2.1 \mathrm{~m} \mathrm{~s}^{-2} \times t^{2} \\ & t=\sqrt{ }(2 \mathrm{~s} / a)=\sqrt{ }\left(2 \times 10 \mathrm{~m} / 2.1 \mathrm{~m} \mathrm{~s}^{-2}\right)=3.086 \mathrm{~s}=3.1 \mathrm{~s} \quad \end{aligned}$ | 2 | Choice of equation and substitution of values Rearrangement and evaluation |
| (a) (iii) | $\begin{aligned} & a=\text { force per kg/1 } \mathrm{kg}=54685 \mathrm{~m} \mathrm{~s} \\ & \Delta t \text { for } 1 \mathrm{~kg} \text { to leave rocket }=1 / 15 \mathrm{~s} \\ & v=a \Delta t=54685 \mathrm{~m} \mathrm{~s}^{-2} \times 1 / 15 \mathrm{~s}=3645.7 \mathrm{~m} \mathrm{~s}^{-1}=3650 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \end{aligned}$ | 2 | Use of $F=\Delta p / \Delta t$ is OK, but not AS |
| (b) | $\begin{aligned} & \text { magnitude of displacement }=\sqrt{\left\{(300)^{2}+(18)^{2}\right\} \mathrm{km}=301 \mathrm{~km} \checkmark} \\ & \text { mean speed }=301000 \mathrm{~m} / 440 \mathrm{~s}=684 \mathrm{~m} \mathrm{~s}^{-1} \checkmark \end{aligned}$ | 2 | ```Or vertical displacement is negligible, so displacement= 300 km 300 km gives 682 m s-1``` |
| (c) (i) | $\begin{array}{\|l\|} \hline 8.0 \\ \hline 12.0 \\ \\ \end{array}$ | 1 | Both needed for the mark |
| (c) (ii) | $2.2(2)$ <br> $2.5(0)$ <br> $2.8(6) / 2.9$ | 1 | All three needed for the mark <Ignore sig figs for the third one?> |
| (c) (iii) | $\begin{array}{\|l\|l\|} \hline 8.4 & \checkmark \\ \hline 13.4 & \checkmark \\ \hline \end{array}$ | 2 | Ecf from (ii) |
| (c) (iv) | $m \downarrow \Rightarrow a \uparrow \downarrow$ <br> $v$ increases more rapidly/ $\Delta v$ will get increasingly larger $\checkmark$ | 2 |  |
|  | Total | 15 |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | (a) |  | One point from each category and any one other General: <br> Lead-acid batteries much heavier than Li-ion for same energy/ Li-ion has much more energy per kg than lead-acid By a factor of 260/37 $=7 \checkmark$ <br> Total energy stored in Li-ion example is roughly double that in the lead-acid $\checkmark$ <br> Li-ion for car: <br> Less massive car has greater acceleration (for same force) $\checkmark$ <br> Requires less energy to go uphill $\checkmark$ <br> Is more manoeuvrable <br> Lead-acid for fork-lift: <br> Heavy, low battery makes the truck less likely to tip $\checkmark$ Truck needs to move slowly, so acceleration not an issue $\checkmark$ Doesn't need to go uphill $\checkmark$ | 4 |  |
|  | (b) | (i) | Energy stored $=275 \mathrm{~kg} \times 940 \mathrm{~kJ} \mathrm{~kg}{ }^{-1}=2.585 \times 10^{8} \mathrm{~J} \checkmark$ | 1 |  |
|  |  | (ii) | $\begin{aligned} & \text { p.d. across motor }=350 \mathrm{~V}-(230 \mathrm{~A} \times 0.030 \Omega)=343.1 \mathrm{~V} \\ & \text { resistance of motor }=343.1 \mathrm{~V} / 230 \mathrm{~A}=1.49 \Omega^{\checkmark} \end{aligned}$ | 2 | NB if internal resistance ignored, $\mathrm{V} / \mathrm{I}=1.52 \Omega$ $P / I^{2}=1.51 \Omega$ |
|  |  | (iii) | $\begin{aligned} & t=200 \mathrm{~km} / 80 \mathrm{~km} \mathrm{~h}^{-1}=2.5 \mathrm{~h}=9000 \mathrm{~s} \checkmark \\ & P=E / t=2.574 \times 10^{8} \mathrm{~J} / 9000 \mathrm{~s}=28600 \mathrm{~W} \text { (which is about } 1 / 3 \text { of } \\ & 80 \mathrm{~kW}) \checkmark \end{aligned}$ | 2 |  |


|  | stion | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 7 | (c)* | (Level 3) (5-6 marks) <br> Compares performance of the two cars, both in terms of direct quotation of the data and in calculations of acceleration/force/energy. Uses the comparisons to produce a reasoned choice of the better family car. <br> There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. <br> (Level 2) (3-4 marks) <br> Compares performance of the two cars in terms of direct quotation of the data and makes attempts, possibly unsuccessful, to calculate at least one of acceleration, force andenergy. Uses the comparisons to produce a reasoned choice of the better family car. <br> There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. <br> (Level 1) (1-2 marks) <br> Compares the two cars in terms of direct quotation of the data and in calculations of acceleration/force/energy. Makes limited or no reference to desirable features of a family car. <br> There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant <br> (0 marks) <br> No response or no response worthy of credit. | [6] | Indicative scientific points may include: <br> Simple comparison of the data <br> - Range for $A$ is double that for $B$ <br> Calculations for the two cars <br> - Acceleration of $A=2.44 \mathrm{~m} \mathrm{~s}^{-2}$ <br> - Due to resultant force 3.6 kN <br> - Acceleration of $B=1.75 \mathrm{~m} \mathrm{~s}^{-2}$ <br> - Due to resultant force 3.6 kN <br> - A runs at full power for $0.625 \mathrm{~h}=38$ minutes <br> - B runs at full power for $0.340 \mathrm{~h}=20$ minutes <br> Desirable features for a family car <br> - Needs to go a reasonable distance and back without charging <br> - Need to hold a typical family <br> - Should have good acceleration (to avoid accidents) <br> Use the L1, L2, L3 annotations in Scoris; do not use ticks. |
|  |  | Total | 15 |  |
|  |  | Section B total | 30 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| Section C |  |  |  |
| 8 (a)* | (Level 3) (5-6 marks) <br> A detailed procedure described in such a way that an experimenter could use it to perform the experiment. Range of frequencies to be used is well reasoned. General procedural details related to reproducibility and accuracy are well described. <br> There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. <br> (Level 2) (3-4 marks) <br> Main points of the procedure, how to vary and measure $L$, are covered but may lack detail. Range of frequencies to be used may be missing or not clear. <br> There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. <br> (Level 1) (1-2 marks) <br> Incomplete or superficial description of the procedure which could probably not be done adequately by someone with no prior experience of the experiment. Suitable frequency range to use may be absent. <br> There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant <br> (0 marks) <br> No response or no response worthy of credit. | [6] | Indicative scientific points may include: <br> Preparatory calculations/estimates <br> - Wavelengths produced by sig. gen. are in the range 1.7 mm to 34 m <br> - Max wavelength used $=4 \times 35 \mathrm{~cm}=1.4 \mathrm{~m}$ <br> - Corresponding to minimum frequency $=242 \mathrm{~Hz}$ <br> - Smallest reasonably measurable $L$ is about 1 cm <br> - Corresponding to $f=340 \mathrm{~m} \mathrm{~s}^{-1} / 0.04 \mathrm{~m} \approx 8.5 \mathrm{kHz}$ <br> General procedural details <br> - Make repeated readings to get at least 3 readings for each $f$ <br> - e.g. by going up and then down in regular intervals of $f$ <br> - Check data for outliers and repeat as necessary <br> - Find mean $L$ and $\Delta L$ for each set at a particular $f$ <br> - Pay attention to safety <br> - e.g. avoid tipping hazard of trailing cables <br> - Have preliminary run to confirm feasibility <br> Details related to the resonance experiment <br> - Ruler clamped/ fastened next to the clamped tube <br> - Specified method of supporting outer cylinder securely or getting an second observer to read resonance position <br> Use the L1, L2, L3 annotations in Scoris; do not use ticks. |


| 8 (b) | $\begin{aligned} & \lambda=4 L_{1}+4 C \checkmark \\ & v=f \lambda \Rightarrow 1 / f=\lambda / v \checkmark \\ & 1 / f=4 L_{1} / v+4 C / v+\text { relating to } y=m x+c \end{aligned}$ | 3 |  |
| :---: | :---: | :---: | :---: |
| (c) (i) | Higher $f$ resonances less easy to determine $\checkmark$ Due to less variation in sound intensity $\checkmark$ | 2 | Allow any reasonable suggestion |
| (c) (ii) | Variation in $f$ small compared with variation in $L /$ signal generator sets $f$ reliably precisely | 1 |  |
| (c) (iii) | 800 0.00125 <br> 900 0.00111 <br> AND <br> both points correctly plotted | 1 | Sig figs must be same as other 1/f data |
| (c) (iv) | Reasonable best-fit line and one extreme passible line <br> At least one correct gradient calculation with triangle base at least $0.1 \mathrm{~m} \checkmark$ $\begin{aligned} & v=350 \mathrm{~m} \mathrm{~s}^{-1} \\ & \Delta v=40 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ | 4 | e.c.f. own lines |
|  | Section C Total | 17 |  |

OCR (Oxford Cambridge and RSA Examinations)<br>The Triangle Building<br>Shaftesbury Road<br>Cambridge<br>CB2 8EA<br>OCR Customer Contact Centre<br>Education and Learning<br>Telephone: 01223553998<br>Facsimile: 01223552627<br>Email: general.qualifications@ocr.org.uk<br>www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

